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Abstract—Web services make tools which used to be merely 
accessible to the specialist available to all, and permitting 
previous manual data processing and analysis tasks to be 
automated. One of  key problem is Web services composition 
in terms of Quality of Service (QoS). There are many task 
concurrencies, such as remote sensing image processing, in 
computation-intensive scientific applications. However, 
existing Web service optimal combination approaches are 
mainly focused on single tasks by using “selfish” behavior to 
pursue optimal solutions. This causes conflicts because many 
concurrent tasks are competing for limited optimal resources, 
and the reducing of service quality in services. Based on the 
best reply function of quantified task conflicts and game theory, 
this paper establishes a mathematical model to depict the 
competitive relationship between multitasks and Web service 
under QoS constraints and it guarantees that every task can 
obtain optimal utility services considering other task 
combination strategies. Moreover, an iterative algorithm to 
reach the Nash equilibrium is also proposed. Theory and 
experimental analysis show the approach has a fine 
convergence property, and can considerably enhance the 
actual utility of all tasks when compared with existing Web 
services combinatorial methods. The proposed approach 
provides a new path for QoS-aware Web service with optimal 
combinations for concurrent tasks. 

Keywords; Web service combination; QoS; Non-Cooperative 
Game; Nash equilibrium  

I.  INTRODUCTION 
Web services “have a transformative effect on scientific 

communities, making tools which used to be merely 
accessible to the specialist available to all, and permitting 
previous manual data processing and analysis tasks to be 
automated” [1, 2]. Web services optimization composition in 
terms of Quality of Service (QoS) is a key problem[3-5]. 

Concurrency of a large number of tasks often exists in 
Web services-based applications, especially in crisis-
orientated management. However, when every task 
“selfishly” seeks for the optimum solution without 
considering the performance of the entire service system, 
such methods will result in conflicts between tasks because 
numerous concurrent tasks will compete for limited optimal 
resources. This means that many tasks will be assigned to the 
same optimal service at the same time, which results in the 
degeneration of processing service capability, and cause 
service quality decline in all service chains[6, 7]. Each 

service must deal with different tasks under concurrency; 
thus, these tasks form a waiting queue, and response time is 
not only influenced by the process ability of the process 
service itself, but also by the task load. Moreover, the 
complicated construction of service chain control flow 
makes the calculation of QoS aggregation value of service 
chain, particularly in terms of response time, much harder.  

Unfortunately, existing QoS-aware service composition 
methods based on optimization theory [3] and pursuing 
performance optimization (e.g., time, price, stability, and so 
on) under user QoS constraint [8] are unable to solve the 
problems mentioned above. For instance, the local QoS 
optimal composition methods [9, 10] select an optimal 
service via “greedy” means; the global QoS optimal 
composition method [11-14], which comprehensively 
considers the QoS model, takes the QoS-aware service 
composition problem to be a mixed integer linear 
programming; the re-planning methods consider the dynamic 
change of QoS and guarantee the optimal performance of the 
service chain execution under the dynamic environment 
through re-planning mechanisms [12, 15-17]. 

Aimed at solving the conflict of optimal resources 
resulting from the competition of concurrent tasks in time 
sensitive applications, a non-cooperative game method is 
proposed in this paper. Our method assigns tasks to each 
service node in a balanced manner, decrease the conflict 
caused by competition for optimal resources, and allow each 
task to receive the highest performance. The contributions of 
this paper are: 

First, we modelled the competition for optimal Web 
services as a non-cooperative game in which each task 
composites concrete services to obtain the best utility 
according to the service composition strategies of the other 
tasks. To our best knowledge, this is the first model that 
considers the Web service composition problem from the 
view of the entire system (all tasks) instead of a tradition 
single task approach to address the issue of competition 
amongst the best Web services using game theory under a 
simultaneous task situation. 

Then, the control flow characteristics of Web 
combination service in terms of the features of multitask 
concurrency are analyzed, and the QoS aggregation model of 
multitask concurrency and the evaluation model of task 
integration utility are advanced. 

Lastly, the optimal service combination issue under 
competition is analyzed by using non-cooperative game 
theory. Moreover, a mathematical model which depicts the 
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competitive relationship between multitasks and Web 
services under the QoS constraints is established through 
using game theory and the best reply function of quantified 
task conflicts as bases. Likewise, the study puts forward an 
iterative algorithm which reaches the Nash equilibrium on 
such basis. 

Further content organization is represented as follows: 
the second section discusses the non-cooperative game 
theory of multitask web service optimal combination; the 
third section describes iterative algorithm of best reply; the 
fourth section provides experimental results and analysis; the 
fifth section illustrates relevant work, and the sixth section 
summarizes this paper, and forecasts the further work. 

II. NON-COOPERATIVE GAME THEORY OF OPTIMAL 
WEB SERVICE COMBINATION FOR CONCURRENT TASKS 

The primary consideration here is a phenomenon in 
which many concurrent tasks require a service chain of the 
same function. For example, in a huge disaster, many 
different departments have to implement disaster assessment 

through a service chain with identical functions (Figure 1). If 
every task takes the “selfish” optimal strategy, and 
maximizes its own utility without regard for selections of 
other tasks, then each task will select the optimal resource 
(heavy line, Figure 1). This will result in the performance 
degradation problem of optimal resources, which takes away 
from the service chain performance of all tasks. 

Optimal Web service combination of concurrent tasks 
can be seen as a non-cooperative game process in which all 
tasks are dynamically adjusted according to the strategy of 
other tasks. Each task continuously readjusts its strategy 
according to the combination strategy of other tasks, and 
finally reaches the Nash equilibrium[18]. Under the 
equilibrium state, each task can attain the widest utility with 
considering the combination strategy of other tasks. This also 
guarantees the optimization of task performance. As a 
consequence, we propose the optimal multi-task Web service 
combination method based on the non-cooperative game 
theory. 

 
Figure 1.  Sample Web service chain of concurrent tasks. 

Definition 1 the non-cooperative game model of optimal 
service combination: is assembled by players and formed by 
each player’s strategy space and utility function, where: 

(1) Players:  types of continuous tasks exist and every 
type of task has the same QoS constraints such as cost and 
response time. Moreover, the arrival ratio of every task  
follows the Poisson distribution with rate , . A 
services chain is composed of the abstract service 
collection [17], and every abstract service  

comprised of  is  concrete services with the same functions, 
but different QoS, written as [17].. 

ssing time of each concrete service follows 
the exponential distribution with the even speed 
Suppose the proce

; every 
concrete service in the service chain can be described as 

 queuing syst ]. em[19

(2) Strategy: Let  represent the ratio of task  allocated 
to GI service  in step , which is the serial numbers of 
service in service chain. Vector  
represents the service selection strategy of task  in step , 
and based on this, the service selection strategy of task  is 

; , the compositional 
strategy of all tasks, is called the combination strategy of 
optimal service combination game. 

(3) Utility function:  stands for the expected 
performance executed by every task on service selection. In 
this paper, we define task  to select s rather than , if and 
only if . 

The essence of the model is that the combination strategy 
of each task is the best reply to that of other tasks. As a 
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consequence, we can use the best reply to define the 
competitive relationship between concurrent tasks: task ’s 
best reply to strategy combination  is , which 
means task ’s other strategy will not be more than  in 
utility[20]. 
  (1) 

represents the strategy 
combination vector of all players, excluding player . 

Next, we need to define the computing method of every 
task ’s utility function under multitask circumstances.  

A. Service chain structure model and its QoS computing 
method under concurrent tasks 
Under multitask concurrency condition, tasks may have 

to wait in the service execution queue. Thus, the computing 
method of the response time is also different. The queue 
model of  (Figure 2) is applied to estimate the 
response time of processing services. The cost and 
availability can be regarded as uninfluenced by the continual 
concurrent tasks; accordingly, we can utilize the same 
aggregation algorithm as in single task conditions[12].In the 

 queue model, each task ’s arrival time follows the 
exponential distribution with the speed of , and each 
processed service time follows the exponential distribution 
with the parameter of . Therefore, each processing service 
time is [19].  

 
Figure 2.   queue model. 

To calculate the aggregation response time of the service 
chain, analysis should be carried out in sequential, parallel, 
branch, and loop structures: 

Sequential structure represents the  abstract services 
implemented by order;  

Parallel structure: the  branched abstract services must 
be simultaneously carried;  

Branch structure: there are  branches, among which 
every branch  is selected according to the possibility .  

Loop structure: the abstract services will be re-
implemented for  times;  

(1) Sequential structure. In the queue network, according 
to Burke’s theorem[21], for the  queue with arriving 
rate of , its output is also a Poisson process with the rate of 

. That is to say, for all the processing services of the 
sequential structure, the arrival and departure processes 
follow the Poisson distribution. As a result, the computing 
method of the response time of the sequential structure is 

, where  represents the total length 
of the sequential structure, and  indicates the index of steps 
in the sequential structure. 

 (2) Parallel structure. In the parallel structure, every 
branch needs to be implemented, Therefore, the arrival rate 
of every branch task is  based on Burke’s theorem[21]. The 
departure process of each branch also follows the Poisson 

distribution with the rate of . Furthermore, the total 
response time is determined by the longest parallel branch, 
i.e., the key path in parallel structure. As a result, to solve the 
response time of a parallel structure, the key path should first 
be solved, then the parallel structures serialized. Hence, the 
computing method of the response time of the parallel 
structure is , where  
represents the number of parallel branches, and  indicates 
the index of parallel structure branches. 

 (3) Branch structure. Branch structure describes the 
possibility of execution route being selected, if there are  
branches, and every branch ’s possibility of being chosen is 

, the sum of which satisfies . Accordingly, 
the arrival rate of every branch task is . Based on Burke’s 
theorem, the departure of every branch follows the Poisson 
distribution with the rate of . Tasks are allocated to 
different branches with different possibilities in the branch 
structure; thus, we can still use the serialization method to 
calculate the response time which can be computed as 

. 
 (4) Loop structure. Different from the loop peeling[6] 

and unfolding[10] methods, we consider the loop structure as 
the execution feedback to the queue model. Even if it does 
not obey Poisson distribution inside the loop structure, the 
behaviors of internal processing services can still be 
independent as  because of the feedback. Thus the 
loop structure is still a part of the  queue network. In 
accordance with Jackson theorem, presuming the internal 
arrival rate of the loop structure is , the feedback possibility 
is , consequently:  

, so  
The response time in the loop structure is 

. 
Under the condition of multitask concurrency, every 

processing service needs to simultaneously deal with 
different tasks. Thus, for every processing, the arrival 
quantity of actual tasks is , and the entire 
expected response time of task  is the aggregation formulas 
of every QoS dimension. When it comes to cost and 
availability, the computing methods are the same with [12]. 

Sequential structure:  

Parallel structure:  

Branch structure:  

Loop structure:  

B. The computing model of task utility  
In this paper, the cost, availability, and response time are 

included in the QoS model, which is a representative 
dimension denoting accumulation, multiplication, and 
extreme value aggregate theorem[22, 23]. Without loss of 
generality, the paper primarily considers the abovementioned 
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three representative dimensions as the QoS computing 
indicators, written as , , and . 

QoS indicators have differences in value range and 
dimension, thus, we first need to normalize QoS indicators.  

Different tasks have different preferences over the QoS 
dimensions; hence, the different aggregate QoS utility 
values with the simple additive weighting method. As a 
result, for any task , the utility function can be expressed as 

, where  represents different QoS 
dimensions with different weights; and  states the QoS 
aggregation utility of the  dimension in the  task 

A. The best reply of a single task 
First, we establish the quantitative model for the 

competitive relationship between concurrent tasks by 
maintaining the computing ability of the services. 

Definition 2: The retained computing ability (RCA)[24] 
is the available processing ability in the  concrete service in 
the  abstract service of task : 
  (3) 

Obviously, tasks will impact each other by using the 
process ability of Web services. The RCA illustrates how 
many abilities of the Web service remain when a task is 
assigned to this service. It is thus natural to question how the 
task chooses the optimal strategy under this condition. 

, ,  (2) 

Where  indicates the aggregation function of 
normal cost,  represents the aggregation 
function of normal availability, and  states the 
aggregation function of normal response time. , 
representing the QoS dimensional index; for example,  
indicates the cost;  and  represents the 
maximum aggregation value and the minimum aggregation 
value of the  QoS dimension in the  task, respectively. If 

 and  are equal to each other, then it represents 
the QoS dimension values of the services equal to each other 
inside the service chain, thus  being assigned as 1. 

 is the normalized factor written as . 
To decide every QoS, the maximum and minimum values of 
the dimension do not need to be gone over specific services 
in every abstract service, but must be selected only the 
maximum or minimal value inside. As a result, the 
normalization process can be achieved in the polynomial 
time[12]. 

Definition 3: Considering the RCA, the optimal problem 
 of every task is 

  (4) 

  (5) 

 ,   (6) 

  (7) 
(5) describes non-negative conditions. It represents every 

processing server is allocated with non-negative tasks; (6) 
describes conservation conditions. It represents every task  
is allocated to processing services and states stable 
conditions, and shows that any arrival rate is smaller than the 
biggest service rate to guarantee that the system does not 
“explode” because of queuing; (7) explains the constraint 
conditions between task and cost, as well as availability and 
response time, where ,  separately represents, 
task ’s average cost, average availability, and average 
response time constraint conditions. III. ITERATION ALGORITHMS WITH BEST REPLY 

Definition 4: Best reply (BR) strategy of every task, is 
the solution of  .  

Based on the non-cooperative game with optimal service 
combination, the mathematical model of the best reply of a 
single task is first established, and then the best reply of 
multitask iteration algorithm is used to solve the non-
cooperative game model of service combination. 

Objective and constraint functions are second-order 
derivable, which constantly have second-order derivatives 
greater than or equal to 0. Therefore,  is a convex 
programming problem. First-order Karush-Kuhn-Tucker’s 
(KKT) condition is necessary and a sufficient condition for 
the  solution exists. The LaGrange function is 

  (8) 

Where constraint condition (6) is the assumed condition 
of the entire system stability; it can be considered as always 
true; therefore  

According to KKT condition,  for any 
, , , the necessary and 

sufficient condition between   and the solution of is: 

 , ,  (9) 
  (11) 

  (10) 

 ,  (12) 

  (13) 
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  (14) 
Where:  

 (15) 

  (16) 

  (17) 

 , ,  (18) 
The abovementioned equations form nonlinear equations, 

and by solving the equations, we can obtain the best reply 
combination strategy  in any iterations of task . 

B. Best reply iteration algorithm of concurrent tasks 
The core concept behind using a best reply-based 

algorithm to solve the Nash equilibrium is that every task 
resets its own combination strategy according to other 
strategies. This process is iterated until it converges to Nash 
equilibrium. For instance, the first task uses the original 
value to get the combination , where the superscript 1 is 
the iteration number. Then, the second task obtains the 
optimal combination strategy  in accordance with the 
combination strategy of the previous task, that is, the best 
reply of task 2 compared with that of other tasks. The 
process is continued until the last task gains its 
corresponding composition strategy  according to the 
previous  task’s combination conditions. Subsequently, 
the second round of iteration is implemented; this time, the 
first task will update its own combination strategy based on 
the combination strategies of all other tasks. The steps can be 
called a basic progressive system. Based on the 
abovementioned best reply of a single task, we design the 
ESS-based best reply iteration algorithm of the multitasks[25] 
(Figure 3). 

 // composition strategy of task  at the xth iteration 
 // utility value of task at the xth  iteration 

 // the number of iteration 
 //  norm at the xth iteration 

 
,  

,  
 

// get the global value of x and  sum
  

 
 
 
 

 
 

 
 

 

 
// calculate residual services capability 

 for each services 
 

 // calculate composition strategy of best reply for 
each task at the xth iteration 

 
 

  
 

Figure 3.  Multitask best reply’s iteration algorithm, in which 
, and  is system acceptance tolerance. 

IV. EXPERIMENT AND ANALYSIS EVALUATION 

A. Simulation environment 
To test the efficiency of optimal Web service 

combination non-cooperative game method, a simulation 
experiment was conducted. First, the abstract service chain 
(Figure 1) was simulated, in which every abstract service 
includes 10 specific services. Specific services are modeled 
as M/M/1 processing queue system, and every queue 
implements services based on a “first come, first served” 
principle. Afterwards, every QoS indicator value of a service 
was randomly created, and all of the values conform to 
normal distribution. Based on such conditions, the non-
cooperative game method of optimal Web service 
combination was evaluated.  

B. Performance Evaluation 
In a bid to evaluate the non-cooperative game method 

performance of optimal Web service combination, two 
classic methods were compared: 

Proportional scheme (PS) [26] is a classic distribution 
method employing task combination strategy, in which 
servers with higher processing ability acquire more tasks 
according to the processing ability of servers and based on 
the ratio distribution task equilibrium algorithm. In 
accordance with the comprehensive QoS indicator of every 
service, tasks are distributed, and the weighed utility value of 
every QoS indicator is assigned as the combination standard. 
Services with smaller comprehensive utility value are 
allocated with more tasks. 

Mixed integer linear programming-based (MILP) [8, 12] 
method is a typical single-task service combination 
algorithm with the basic characteristics of optimizing the 
combination strategy of every task without regard for the 
combination strategy of other task. This method considers 
the normalized weight utility of QoS indicator as the optimal 
objective function to satisfy user’s global optimal solutions 
of QoS demand constraint conditions. 

The performance evaluation of the non-cooperative game 
method of optimal Web service combination’s was 
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conducted in terms of three aspects: algorithm convergence, 
task utility, and fairness of task distribution. 

1) Algorithm convergence. One basic issue of the best 
reply iteration algorithm is whether it can reach the Nash 
equilibrium; i.e., whether the algorithm can achieve 
convergence. The combination strategy of each task was 
intially set as 0. The combination strategy of each task is 
redesigned according to the orderly combination strategy of 
other tasks. The algorithm regards the combination strategy 
of 0 as the initial point which can be considered as any point 
because any given point can be easily converted to point 0. 
The experiment demonstrates that the best reply iteration 
algorithm has good convergence without dependence on the 
chosen value of the initial point. The iteration algorithm can 
converge to the Nash equilibrium from any point. 

In the iteration process, by adding the number of tasks 
and changing the tolerable error norm to change the system 
state, we test the effect of these factors on the convergence of 
the algorithm. The method is the number of tasks ranges 
from 10 to 35, and the average arrival rate of every kind is 

, and the tolerable error norm is from 0.1 reduced to 

1.0 10-5. As the tolerable error norm increases, the iteration 
number of algorithm increases accordingly when the quantity 
of tasks is constant. Similarly, the iteration number of the 
algorithm increases as the number of tasks increases when 
the tolerable error norm changes.  

During the process of algorithm convergence, every task 
constantly adjusted its own combination strategy according 
to strategies of the other tasks; the load condition of every 
server also fluctuated regularly with changes in the 
combination strategies of the tasks and finally converged to a 
relatively fixed value. Figure 4 shows the load change of a 
concrete service in the iterative convergence process. For 
instance, a service may be presented few tasks to choose 
from because of its relatively poor initial performance (wave 
trough in Figure 4). In the second round of iteration, however, 
its relative performance becomes improved because no task 
was allocated; the service may cause load concentration 
(wave crest in Figure 4). The fluctuation of the service load 
became exceedingly smaller with each iteration process and 
ultimately converged at a fixed value. 

 
Figure 4.  Service task distribution convergence trajectory. 

 

Figure 5.  Comparison between expected and actual task utilities.  

Task utility. The best reply iteration algorithm in this 
paper reduces the conflicts of multitask optimal resource 
selection under the multitask environment, attains the goal of 
collaborative optimization, and enhances the utility 
optimization of all tasks. The task expectancy utility plans 
the stage for the service chain, and the tasks do not consider 
the allocations and service optimal combination strategies of 
other tasks. The task utility is gained by the task in the 
operations. Utility error is the difference between the actual 
and expected task utilities. Compared with PS and MILP 
(Figure 5), BP method considers the conflicts between the 
combination strategies of other tasks. Therefore, the actual 
utility and utility error are all minimal. BP method stipulates 
that every task constantly changes and finally converges to 
the Nash equilibrium according to other task strategies. 

Figure 6 shows that as the system load increases, the 
actual task utility increases as well. With the increase of 
system load, the number of specific service tasks allocated 
also increases, and the response time of the service increases 

449



too. Then, the actual task utility increases accordingly and 
the performance is consequently reduced. The actual task 
utility of PS and MILP methods rises as the system load 
increases because the methods do not consider the 
combination strategies of other users; when the system load 
increases to a certain quantity, the task utility of the methods 
remarkably increased. BR method states that every task has 
to consider the combination strategies of other tasks; thus, 
the utility of each task has a nearly linear growth, and the 
method does not explode because of the growth of the 
system load. 

 
Figure 6.  Relationship between system load and actual task utility 

V. RELEVANT STUDY 
In a Web service system, many services exist; these can 

satisfy the same function demands with different QoS 
parameters (such as execution time, cost, availability, etc.). 
A key problem is how to use the nonfunctional (QoS) 
properties of the service as bases to automatically select, 
optimize the combination, and execution the Web service 
chain [27].  The wide range of studies on QoS-aware service 
selection and combination method in the service-oriented 
computing area can be divided into two classes according to 
whether the running time can be adjusted: 

1) Static environment 
These methods do not consider dynamic environment 

changes and model the QoS-aware service chain 
combination as a constraint optimization problem. 

According to the differences in computing the optimal 
strategy in the static environment, the QoS-aware method 
can be divided into two types: local optimization and global 
optimization-based methods[12, 28]. Local optimization 
method chooses the best services via greedy search. This 
method always has best performance but the solution of this 
method is not a globe optimal, but a local optimal. Global 
optimization-based method overcomes the disadvantages of 
local optimization, and can find the global optimization 
solution under QoS constraint[11]. Based on its five 
dimensions (cost, response time, reputation, success rate, 

and availability), the method analyzes work flow control 
structure, establishes the QoS-aware integer linear 
programming optimization model, and utilizes the general 
solver of integer linear programming. However, the method 
has the following disadvantages: 

2) Dynamic environment 
The QoS-aware service chain creation method under 

dynamic environments[29-31] is achieved mainly by 
supervising service execution and replan or rebind to 
guarantee that the service chain can smoothly executed with 
optimal performance[32]. 

Based on the replan [15, 33], the references used genetic 
algorithm to solve the QoS combination problems, 
considered property changes in executing services, and put 
forward a replan mechanism which can be triggered as 
quickly as possible when abnormal service conditions appear. 
A threshold beforehand is set in the strategy so that when 
any QoS property changes more than the threshold does, the 
program will replan. However, threshold was not properly 
defined, and the specific re-programming strategy was not 
provided. 

Based on the segmentation optimization concept[34], the 
references used a two-stage re-programming method: in the 
first stage, the mixed integer programming is slackened into 
a linear programming, and allow for the decision variables to 
choose values in [0,1], to use the simplex method to quickly 
solve the creation conditions; the second stage applies back-
track algorithm to build integer programming based on slack 
to obtain a feasible solution.  

From the above, existing studies on QoS-aware optimal 
service combination method essentially are focused on single 
tasks to pursue the optimal solutions based on optimization 
theory. The competition and cooperation of resources among 
concurrent tasks are very common in the lifecycle of service 
optimal combination. Nevertheless, the competition and 
cooperation is the basis for maintaining orderliness, high 
efficiency, and coordinated services. As a result, studies on 
multitask concurrency with QoS-aware space information 
optimal service combination method are beneficial in 
analyzing and solving optimal combination problems of 
high-efficiency service resources in the entire system (all 
tasks). In a comprehensive utility perspective, all tasks have 
the best comprehensive utility of space information service 
to guarantee that in the complicated space service system, the 
highly efficient allocation and dispatch of service resources 
can be realized. 

VI. SUMMARY AND OUTLOOK 
Non-cooperative game based QoS-aware Web service 

combination method solves the performance bottleneck 
caused by optimal service competition in the Web service 
chain in multitask conditions, in addition to realizing the 
coordinated optimization of all service chains. Theories and 
experiment results have demonstrated that the method has a 
good convergence and all expected average task utility could 
be maximized.  

But there still some issues are not considered in this 
paper. The main problem is that the best reply based 
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algorithm will increase the computational complexity for the 
iteration process. Actually, the performance degeneration is 
little with a small  given, e.g. equal 10-3, the iteration 
number is no more than 16. In this paper, we mainly consider 
the response time calculating method and best services 
compositing caused by confliction of concurrent tasks, and 
the performance of algorithm will be considered in future 
work. 

Further work will include two parts: theory and 
experiment. Theory analysis will include the evolutionary 
game model with dynamic environmental changes, system 
optimization, Pareto optimization, as well as a relationship 
analysis featuring the Nash equilibrium. Experiment analysis 
will include more experiments in the PlanetLab. 
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